Solution Bank

Exercise 8B

Solution Bank

	$r=2 \sec\left(\theta-\frac{\pi}{3}\right)$
	$r\cos\!\left(\theta-\frac{\pi}{3}\right)=2$
\Rightarrow	$r\cos\theta\cos\frac{\pi}{3} + r\sin\theta\sin\frac{\pi}{3} = 2$
\Rightarrow	$\frac{x}{2} + y\frac{\sqrt{3}}{2} = 2$
	$x + y\sqrt{3} = 4$
or	$y = \frac{4}{\sqrt{3}} - \frac{1}{\sqrt{3}}x$

Circle centre $\left(0, \frac{a}{2}\right)$ radius $\frac{a}{2}$

h
$$r = a(1 - \cos\theta)$$

i $r = a\cos 3\theta$

θ	0	$\frac{\pi}{6}$	$-\frac{\pi}{6}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$
r	а	0	0	0	а	0	0	а	0

1 j $r = a(2 + \cos\theta)$

θ	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
r	3 <i>a</i>	2 <i>a</i>	а	2 <i>a</i>	3 <i>a</i>

Solution Bank

Pearson

k $r = a(6 + \cos\theta)$

θ	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
r	7 <i>a</i>	6 <i>a</i>	5a	6 <i>a</i>	7 <i>a</i>
	74	04	54	04	70

 $6 > 2 \times 1$ \therefore no dimple.

 $\mathbf{l} \quad r = a(4 + 3\cos\theta)$

 $4 < 2 \times 3$ \therefore a dimple at $\theta = \pi$.

m $r = a(2 + \sin \theta)$

 $2 = 2 \times 1$ so no dimple

1 n $r = a(6 + \sin \theta)$

θ	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
r	6 <i>a</i>	7 <i>a</i>	6a	5a	6 <i>a</i>

Solution Bank

Pearson

o $r = a(4+3\sin\theta)$

 $4 < 2 \times 3$: there is a dimple at $\theta = \frac{3\pi}{2}$

p $r = 2\theta$

 $\mathbf{q} \quad r^2 = a^2 \sin \theta$

θ	0	$\frac{\pi}{2}$	π
r	0	а	0

 $6 > 2 \times 1 \text{ so no dimple}$ $\frac{\pi}{2} \qquad \pi \qquad \frac{3\pi}{2} \qquad 2\pi \qquad \qquad \theta = \frac{\pi}{2}$ 7α

Solution Bank

 $1 \quad \mathbf{r} \quad r^2 = a^2 \sin 2\theta$

2 First we rearrange by multiplying both sides of $r = k \sec\left(\frac{\pi}{4} - \theta\right)$ by $\cos\left(\frac{\pi}{4} - \theta\right)$ to obtain

$$r\cos\left(\frac{\pi}{4}-\theta\right)=k$$
.

We then use the compound angle formula and obtain $r\cos\left(\frac{\pi}{4}\right)\cos\theta + r\sin\left(\frac{\pi}{4}\right)\sin\theta = k$,

which is equivalent to $\frac{r\cos\theta}{\sqrt{2}} + \frac{r\sin\theta}{\sqrt{2}} = k$.

Setting $r\cos\theta = x$ and $r\sin\theta = y$, we obtain $x + y = \sqrt{2}k$, a Cartesian coordinate representation of the equation. Now we plot $y = \sqrt{2}k - x$.

Solution Bank

3 a |z-12-5i|=13

So |z - (12 + 5i)| = 13

This is a circle centred at z = 12 + 5i with radius 13.

- **b** Letting z = x + iy denote a complex number, the Cartesian equation for a circle centred at (12,5) with radius 13 is $(x-12)^2 + (y-5)^2 = 169$. Converting this equation to polar coordinates we get $(r\cos\theta - 12)^2 + (r\sin\theta - 5)^2 = 169$ Then we expand and simplify to get $r^2 - 24r\cos\theta - 10r\sin\theta = 0$ which can be written as $r = 24\cos\theta + 10\sin\theta$ when $r \neq 0$.
- **4 a** |z+4+3i|=5
 - So |z (-4 3i)| = 5

This is a circle centred at z = -4 - 3i with radius 5.

b Letting z = x + iy denote a complex number, the Cartesian equation for a circle centred at (-4, -3) with radius 5 is $(x + 4)^2 + (y + 3)^2 = 25$. Converting this equation to polar coordinates we get

 $(r\cos\theta + 4)^2 + (r\sin\theta + 3)^2 = 25.$

Then we expand and simplify to get $r^2 + 8r\cos\theta + 6r\sin\theta = 0$ which can be written as $r = -8\cos\theta - 6\sin\theta$ when $r \neq 0$.