Exercise 8B

1 a $r=6$

b $\theta=\frac{5 \pi}{4}$

c $\theta=-\frac{\pi}{4}$

d
$\Rightarrow \quad r \cos \theta=2$
i.e.

$$
x=2
$$

e $\quad r=3 \operatorname{cosec} \theta$
$\Rightarrow \quad r \sin \theta=3$
i.e. $\quad y=3$

1 f

$$
\begin{array}{rlrl}
r & =2 \sec \left(\theta-\frac{\pi}{3}\right) \\
r \cos \left(\theta-\frac{\pi}{3}\right) & =2 \\
\Rightarrow \quad r \cos \theta \cos \frac{\pi}{3}+r \sin \theta \sin \frac{\pi}{3} & =2 \\
\Rightarrow & & x \\
\Rightarrow & & y \frac{\sqrt{3}}{2} & =2 \\
x+y \sqrt{3} & =4 \\
& \text { or } & y & =\frac{4}{\sqrt{3}}-\frac{1}{\sqrt{3}} x
\end{array}
$$

g $\quad r=a \sin \theta$

$$
\begin{aligned}
\Rightarrow \quad r^{2} & =a r \sin \theta \\
x^{2}+y^{2} & =a y \\
x^{2}+\left(y-\frac{a}{2}\right)^{2} & =\frac{a^{2}}{4}
\end{aligned}
$$

Circle centre $\left(0, \frac{a}{2}\right)$ radius $\frac{a}{2}$
h $r=a(1-\cos \theta)$

$\boldsymbol{\theta}$	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
\boldsymbol{r}	0	a	$2 a$	a	0

i $r=a \cos 3 \theta$

$\boldsymbol{\theta}$	0	$\frac{\pi}{6}$	$-\frac{\pi}{6}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{5 \pi}{6}$	$\frac{7 \pi}{6}$	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$
\boldsymbol{r}	a	0	0	0	a	0	0	a	0

1 j $r=a(2+\cos \theta)$

$\boldsymbol{\theta}$	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
\boldsymbol{r}	$3 a$	$2 a$	a	$2 a$	$3 a$

$2=2 \times 1 \quad \therefore$ no dimple.
k $r=a(6+\cos \theta)$

$\boldsymbol{\theta}$	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
\boldsymbol{r}	$7 a$	$6 a$	$5 a$	$6 a$	$7 a$

$6>2 \times 1 \quad \therefore$ no dimple.
l $r=a(4+3 \cos \theta)$

$\boldsymbol{\theta}$	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
\boldsymbol{r}	$7 a$	$4 a$	a	$4 a$	$7 a$

$4<2 \times 3 \quad \therefore \quad$ a dimple at $\theta=\pi$.
m $r=a(2+\sin \theta)$

$\boldsymbol{\theta}$	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
\boldsymbol{r}	$2 a$	$3 a$	$2 a$	a	$2 a$

$2=2 \times 1$ so no dimple

1 n $r=a(6+\sin \theta)$

$\boldsymbol{\theta}$	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
\boldsymbol{r}	$6 a$	$7 a$	$6 a$	$5 a$	$6 a$

$6>2 \times 1$ so no dimple
o $r=a(4+3 \sin \theta)$

$\boldsymbol{\theta}$	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
\boldsymbol{r}	$4 a$	$7 a$	$4 a$	a	$4 a$

$4<2 \times 3 \therefore$ there is a dimple at $\theta=\frac{3 \pi}{2}$
p $r=2 \theta$

$\boldsymbol{\theta}$	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
\boldsymbol{r}	0	π	2π	3π	4π

q $r^{2}=a^{2} \sin \theta$

$\boldsymbol{\theta}$	0	$\frac{\pi}{2}$	π
\boldsymbol{r}	0	a	0

$1 \mathbf{r} r^{2}=a^{2} \sin 2 \theta$

2 First we rearrange by multiplying both sides of $r=k \sec \left(\frac{\pi}{4}-\theta\right)$ by $\cos \left(\frac{\pi}{4}-\theta\right)$ to obtain $r \cos \left(\frac{\pi}{4}-\theta\right)=k$.
We then use the compound angle formula and obtain $r \cos \left(\frac{\pi}{4}\right) \cos \theta+r \sin \left(\frac{\pi}{4}\right) \sin \theta=k$, which is equivalent to $\frac{r \cos \theta}{\sqrt{2}}+\frac{r \sin \theta}{\sqrt{2}}=k$.
Setting $r \cos \theta=x$ and $r \sin \theta=y$, we obtain $x+y=\sqrt{2} k$, a Cartesian coordinate representation of the equation. Now we plot $y=\sqrt{2} k-x$.

Further Pure Maths 2

3 a $|z-12-5 i|=13$
So $|z-(12+5 i)|=13$
This is a circle centred at $z=12+5 \mathrm{i}$ with radius 13 .

b Letting $z=x+\mathrm{i} y$ denote a complex number, the Cartesian equation for a circle centred at $(12,5)$ with radius 13 is $(x-12)^{2}+(y-5)^{2}=169$.
Converting this equation to polar coordinates we get
$(r \cos \theta-12)^{2}+(r \sin \theta-5)^{2}=169$
Then we expand and simplify to get $r^{2}-24 r \cos \theta-10 r \sin \theta=0$ which can be written as $r=24 \cos \theta+10 \sin \theta$ when $r \neq 0$.

4 a $|z+4+3 i|=5$
So $|z-(-4-3 i)|=5$
This is a circle centred at $z=-4-3 i$ with radius 5 .

b Letting $z=x+\mathrm{i} y$ denote a complex number, the Cartesian equation for a circle centred at $(-4,-3)$ with radius 5 is $(x+4)^{2}+(y+3)^{2}=25$.
Converting this equation to polar coordinates we get
$(r \cos \theta+4)^{2}+(r \sin \theta+3)^{2}=25$.
Then we expand and simplify to get $r^{2}+8 r \cos \theta+6 r \sin \theta=0$ which can be written as $r=-8 \cos \theta-6 \sin \theta$ when $r \neq 0$.

